ADVENT 281
RA OSIRIS 2 OSIRIS RA
THE EGYPTIAN HEAVEN AND HELL BOOK OF THE DEAD E. A.Wallis Budge 1857 - 1934 Page 59/60 CHAPTER OF COMING FORTH BY DAY AND OF MAKING A WAY THROUGH AMMEHET.1 "Saith Osiris, the king, the lord of the two lands, MEN-MAAT-RA, whose word is maat, the son of the Sun, [procceeding] from his body loving him, the lord of crowns, SETI MER-EN-PTAH, whose word is maat, "Homage to "you, O ye lords of maat, who are free from iniquity, "who exist and live for ever and to the double henti "period of everlastingness, MEN-MAAT-, whose word is "maat, the son of the Sun, [proceeding] from his body, " loving him, the lord of diadems, SETI MER-EN-PTAH, / "whose word is maat, before you hath become a "khu (i.e., a spirit) in his attributes, he hath gained " the mastery through his words of power, and he "is laden with his splendours. O deliver ye the "Osiris, the king, the lord of the two lands, MEN-MAAT-RA, whose word is maat, the son of the Sun, lord of diadems, SETI MER-EN-PTAH, whose word is maat, from the crocodile of this Pool of "Matti. He hath his mouth, let him speak there-"with. Let there be granted unto him broad-handed- "ness in your presence, because I know you, and I "know your names. . ."
THE PERIODIC TABLE
Periodic table - Wikipedia https://en.wikipedia.org › wiki › Periodic_table The periodic table, also known as the periodic table of elements, is a tabular display of the chemical elements, which are arranged by atomic number, electron? ... ?Periodic trends · ?Extended periodic table · ?Alternative periodic tables · ?Block The elements from atomic numbers 1 (hydrogen) to 118 (oganesson) have all been discovered or synthesized, completing seven full rows of the periodic table.[1][2] The first 94 elements, hydrogen to plutonium, all occur naturally, though some are found only in trace amounts and a few were discovered in nature only after having first been synthesized.[n 1] Elements 95 to 118 have only been synthesized in laboratories, nuclear reactors, or nuclear explosions.[3] The synthesis of elements having higher atomic numbers is currently being pursued: these elements would begin an eighth row, and theoretical work has been done to suggest possible candidates for this extension. Numerous synthetic radioisotopes of naturally occurring elements have also been produced in laboratories. The organization of the periodic table can be used to derive relationships between the various element properties, and also to predict chemical properties and behaviours of undiscovered or newly synthesized elements. Russian chemist Dmitri Mendeleev published the first recognizable periodic table in 1869, developed mainly to illustrate periodic trends of the then-known elements. He also predicted some properties of unidentified elements that were expected to fill gaps within the table. Most of his forecasts soon proved to be correct, culminating with the discovery of gallium and germanium in 1875 and 1886 respectively, which corroborated his predictions.[4] Mendeleev's idea has been slowly expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behaviour. The modern periodic table now provides a useful framework for analyzing chemical reactions, and continues to be widely used in chemistry, nuclear physics and other sciences. Some discussion remains ongoing regarding the placement and categorisation of specific elements, the future extension and limits of the table, and whether there is an optimal form of the table. Each chemical element has a unique atomic number (Z) representing the number of protons in its nucleus.[n 2] Most elements have differing numbers of neutrons among different atoms, with these variants being referred to as isotopes. For example, carbon has three naturally occurring isotopes: all of its atoms have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. Elements with no stable isotopes have the atomic masses of their most stable isotopes, where such masses are shown, listed in parentheses.[8] In the standard periodic table, the elements are listed in order of increasing atomic number Z. A new row (period) is started when a new electron shell has its first electron. Columns (groups) are determined by the electron configuration of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. oxygen and selenium are in the same column because they both have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.[9] Since 2016, the periodic table has 118 confirmed elements, from element 1 (hydrogen) to 118 (oganesson). Elements 113, 115, 117 and 118, the most recent discoveries, were officially confirmed by the International Union of Pure and Applied Chemistry (IUPAC) in December 2015. Their proposed names, nihonium (Nh), moscovium (Mc), tennessine (Ts) and oganesson (Og) respectively, were made official in November 2016 by IUPAC.[10][11][12][13] The first 94 elements occur naturally; the remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are primordial and 11 occur only in decay chains of primordial elements.[3] No element heavier than einsteinium (element 99) has ever been observed in macroscopic quantities in its pure form, nor has astatine (element 85); francium (element 87) has been only photographed in the form of light emitted from microscopic quantities (300,000 atoms).[14] Sets of elements In chronological order, this section discusses metals and nonmetals (and metalloids); categories of elements; groups and periods; and periodic table blocks. While the recognition of metals as solid, fusible and generally malleable substances dates from antiquity,[15][16] Antoine Lavoisier may have the first to formally distinguish between metals and nonmetals ('non-métalliques') in 1789 with the publication of his 'revolutionary'[17] Elementary Treatise on Chemistry.[18] In 1811, Berzelius referred to nonmetallic elements as metalloids,[19][20] in reference to their ability to form oxyanions.[21][22] In 1825, in a revised German edition of his Textbook of Chemistry,[23][24] he subdivided the metalloids into three classes. These were: constantly gaseous 'gazolyta' (hydrogen, nitrogen, oxygen); real metalloids (sulfur, phosphorus, carbon, boron, silicon); and salt-forming 'halogenia' (fluorine, chlorine, bromine, iodine).[25] Only recently, since the mid-20th century, has the term metalloid been widely used to refer to elements with intermediate or borderline properties between metals and nonmetals. Mendeleev published his periodic table in 1869, along with references to groups of families of elements, and rows or periods of his periodic table. At the same time, Hinrichs wrote that simple lines could be drawn on a periodic table in order to delimit properties of interest, such as elements having metallic lustre (in contrast to those not having such lustre).[26] Charles Janet, in 1928, appears to have been the first to refer to the periodic table's blocks.[27] Metals, metalloids and nonmetals Metal and nonmetals can be further classified into subcategories that show a gradation from metallic to non-metallic properties, when going left to right in the rows. The metals may be subdivided into the highly reactive alkali metals, through the less reactive alkaline earth metals, lanthanides and actinides, via the archetypal transition metals, and ending in the physically and chemically weak post-transition metals. Nonmetals may be simply subdivided into the polyatomic nonmetals, being nearer to the metalloids and show some incipient metallic character; the essentially nonmetallic diatomic nonmetals, nonmetallic and the almost completely inert, monatomic noble gases. Specialized groupings such as refractory metals and noble metals, are examples of subsets of transition metals, also known[29] and occasionally denoted.[30] Placing elements into categories and subcategories based just on shared properties is imperfect. There is a large disparity of properties within each category with notable overlaps at the boundaries, as is the case with most classification schemes.[31] Beryllium, for example, is classified as an alkaline earth metal although its amphoteric chemistry and tendency to mostly form covalent compounds are both attributes of a chemically weak or post-transition metal. Radon is classified as a nonmetallic noble gas yet has some cationic chemistry that is characteristic of metals. Other classification schemes are possible such as the division of the elements into mineralogical occurrence categories, or crystalline structures. Categorizing the elements in this fashion dates back to at least 1869 when Hinrichs[32] wrote that simple boundary lines could be placed on the periodic table to show elements having shared properties, such as metals, nonmetals, or gaseous elements. Categories An individual category is not necessarily exclusive according to its name, boundary, or shared properties. For example, while beryllium in Group 2 is colored as an alkaline earth metal, it is amphoteric rather than alkaline in nature
118 Elements and Their Symbols and Atomic Numbers The periodic table of elements is widely used in the field of Chemistry to look up chemical elements as they are arranged in a manner that displays periodic trends in the chemical properties of the elements. However, the Periodic table generally displays only the symbol of the element and not its entire name. Most of the symbols are similar to the name of the element but some symbols of elements have Latin roots. An example for this is silver which denoted by Ag from its Latin name “Argentum”. Another such example would be the symbol ‘Fe’ which is used to denote Iron and can be traced to the Latin word for iron, “Ferrum”. It could prove difficult for a beginner in chemistry to learn the names of all the elements in the periodic table because these symbols do not always correspond to the English names of the elements. Therefore, a list of 118 elements and their symbols and atomic numbers is provided below: 118 Elements and Their Symbols and Atomic Numbers Name of the Element Symbol of the Element Atomic Number
|